国产v视频_无码欧美毛片一区二区三_久久亚州_国产不卡av在线播放_天堂资源在线www中文_国产乱码在线观看

position: EnglishChannel  > InnovationChina> Chinese Scientists Make Breakthrough in fNIRS Imaging Technology

Chinese Scientists Make Breakthrough in fNIRS Imaging Technology

Source: 科技日報 | 2024-02-27 15:58:06 | Author: 王曉夏


Photo?shows?the?application?of?fNIRS brain imaging equipment.?(Photo?from?official?website?of?Huichuang)

By Staff Reporters

For a long time, the evaluation and diagnosis of mental and psychosomatic diseases have been lacking objective biological indicators. Now, the application of functional near-infrared spectroscopy (fNIRS) imaging technology may help solve this problem.

A research team from Beihang University (BUAA) has developed fNIRS brain imaging equipment with over 100-channels. Based on fNIRS imaging technology, an intelligent disease diagnosis and treatment model has also been established.

Fit for purpose

High resolution imaging of brain activity in its natural state had been a challenge worldwide untill the advent of fNIRS imaging equipment, which is now considered to be a solution to this problem. The device can record brain activity as people walk, drive, talk, play a musical instrument or games, and also be used on restless children, claustrophobic patients and people who are unable to undergo MRI scans.

However, the current fNIRS equipment, with a unit price of millions of RMB, cannot effectively image the areas covered by people’s dark hair, such as the parietal lobe and occipital lobe. This is because many Westerners have light colored hair, while Asians have dark hair, and dark colors absorb 1,000 times more infrared light, said Wang Daifa, who leads the research team at BUAA.

After hundreds of experiments, setbacks and verifications, Wang’s team finally made a breakthrough in the physical limit of near-infrared ultra-light detection technology and original signal extraction technology, to overcome the challenge imposed by dark hair with their whole brain imaging technology.

Higher resolution

In 2016, Wang’s team founded Danyang Huichuang Medical Equipment Co. Ltd (Huichuang) to manufacture new equipment of high resolution imaging." After three years of efforts, we began using fNIRS imaging equipment in the clinic, initiating the development of homegrown high-end equipment in this field,” said Fu Qijun, R&D director of Huichuang.

The R&D team did not stop there. Their next goal was to improve the accuracy of fNIRS imaging. Fu said that the advantages of fNIRS imaging technology are many, but the disadvantages are also obvious. “It is accurate to only about 3 cm, while the accuracy of functional MRI (fMRI) is 3 mm,” Fu said.

Scientists have long been trying to improve the accuracy of fNIRS imaging to the level of fMRI, and in recent years, the development of artificial intelligence and deep learning have assisted to solve this problem.

After numerous attempts, Wang’s team found a way, which combines neural network-based image reconstruction frameworks and models with traditional physical models, to improve the spatial resolution of fNIRS imaging to about 5 mm.

Intelligent interpreting system

As fNIRS imaging is a new technology and outputs new type of images, several questions emerged that need answers. How to interpret the image? What are indicators of insomnia, depression or autism? What about medication?

"We want to build a model that can help doctors analyze the image information and support disease diagnosis, classification and evaluation of therapeutic effect throughout the clinical process," said Deng Hao, software development director of Huichuang.

The team has established cooperation with dozens of clinical institutions, and has collected tens of thousands of dynamic brain function data. The software developers designed a model to collect disease-related data and establish the link between data and disease to support diagnosis.

To date, fNIRS imaging technology and related models have been demonstrated in more than 800 institutions including Peking Union Medical College Hospital, Shanghai Huashan Hospital and Tsinghua University. For Wang and his team, after nearly 20 years of effort, they are on the threshold of taking a giant leap for science and humankind.

Editor:王曉夏

Top News

Forging a Resilient Economy with Sci-tech Power

Tiangong Ultra, developed by the Beijing Humanoid Robot Innovation Center, won the world's first half-marathon for humanoid robots in Beijing on April 19, demonstrating the prospects of China's humanoid robot industry and the epitome of the country's strategic emerging industries and future industries. These industries are surging ahead, facilitating the construction of a resilient economy with sci-tech force.

抱歉,您使用的瀏覽器版本過低或開啟了瀏覽器兼容模式,這會影響您正常瀏覽本網(wǎng)頁

您可以進(jìn)行以下操作:

1.將瀏覽器切換回極速模式

2.點擊下面圖標(biāo)升級或更換您的瀏覽器

3.暫不升級,繼續(xù)瀏覽

繼續(xù)瀏覽
主站蜘蛛池模板: 久久精品国产99久久久古代 | 午夜精品福利影院 | 日日麻批视频 | www.亚洲一区.com| 日韩av在线网页 | 国产精品视频 – 无名网 | 日韩一区二区在线播放 | 欧美成人毛片 | 亚洲射逼 | 羞羞答答xxdd在线网站 | 亚洲精品成人片在线观看精品字幕 | 国产凹凸久久精品一区 | 国产黄片自拍亚洲AV | 日韩精品一区二区三区九九 | 国产一二区在线 | 经典av在线 | 精品国产一区二区三区久久久蜜 | 亚洲a成人片在线播放 | 国产精品区视频 | 999国产在线观看 | 日韩高清在线播放 | 欧美一区二区三区免费观看 | ww.久久| 亚洲视频自拍 | 日韩免费播放视频 | 一区二区三区乱码国产在线 | 成人三区四区 | 99国产精品久久久久久久成人热 | 一区二区片 | 久久精品不卡一区二区 | 国产aⅴ无码片毛片一级网站 | 久久精品久久精品 | 国产精品久久久免费视频 | 国产中文av在线 | 久久99国产精品二区不卡 | 欧美久久免费 | 九九热国产 | 国产精品久久久久久久久久久久久久久久 | 国产黄频免费无数次看 | 亚洲精品一区二区三 | 九九视频在线免费观看 |